By Topic

Today's Traveling Salesman Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Oberlin, P. ; Dept. of Mech. Eng., Texas A&M Univ., College Station, TX, USA ; Rathinam, S. ; Darbha, S.

Heterogeneous unmanned aerial vehicles (UAVs) are being developed for several civil and military applications. These vehicles can differ either in their motion constraints or sensing/attack capabilities. This article uses methods from operations research to address a fundamental routing problem involving heterogeneous UAVs. The approach is to transform the routing problem into a relatively better understood single, asymmetric, traveling salesman problem (ATSP) and use the algorithms available for the ATSP to address the routing problem. To test the effectiveness of the transformation, the well-known Lin-Kernighan-Helsgaun heuristic was applied to the transformed ATSP. Computational results on the transformed ATSP show that solutions whose costs are within 16% of the optimum can be obtained relatively fast [within 40 s of central processing unit (CPU)] for the routing problem involving ten heterogeneous UAVs and 40 targets.

Published in:

Robotics & Automation Magazine, IEEE  (Volume:17 ,  Issue: 4 )