Cart (Loading....) | Create Account
Close category search window
 

SOA-MZI-Based Nonlinear Optical Signal Processing: A Frequency Domain Transfer Function for Wavelength Conversion, Clock Recovery, and Packet Envelope Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Spyropoulou, M. ; Dept. of Informatic, Aristotle Univ. of Thessaloniki, Thessaloniki, Greece ; Pleros, N. ; Miliou, A.

We present analytic expressions for the frequency-domain transfer function of semiconductor optical amplifier Mach-Zehnder interferometric (SOA-MZI) switches that employ a single optical control signal and a continuous wave input optical beam. Our analysis relies on first-order perturbation theory approximations applied both to the SOA response as well as to the SOA-MZI characteristics, yielding a frequency response that enables a qualitative insight into the different SOA-MZI operational regimes. The final transfer function expression is utilized for the analysis and evaluation of the multifunctional potential of SOA-MZI switches, concluding with the necessary conditions for supporting a number of completely different SOA-MZI-based nonlinear signal processing applications that have been demonstrated experimentally: wavelength conversion, packet envelope detection (PED), and clock recovery (CR). The theoretically obtained operational conditions are in close agreement with experimental observations, showing that SOA-MZIs can serve as functional circuit elements in applications with different requirements depending on its operational parameters: as low-pass filtering devices with cut-off frequencies in the megahertz regime or in the multi-gigahertz regime, and as resonant modules resembling band-pass filtering structures. The validity of our theoretical SOA-MZI frequency-domain system model is further confirmed by its successful incorporation in a Fabry-Perot assisted SOA-MZI subsystem, demonstrating PED and CR operations through the exploitation of typical systems theory tools.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:47 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.