Cart (Loading....) | Create Account
Close category search window
 

Physical Movement Monitoring Using Body Sensor Networks: A Phonological Approach to Construct Spatial Decision Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghasemzadeh, H. ; West Wireless Health Inst., La Jolla, CA, USA ; Jafari, R.

Monitoring human activities using wearable sensor nodes has the potential to enable many useful applications for everyday situations. Limited computation, battery lifetime and communication bandwidth make efficient use of these platforms crucial. In this paper, we introduce a novel classification model that identifies physical movements from body-worn inertial sensors while taking collaborative nature and limited resources of the system into consideration. Our action recognition model uses a decision tree structure to minimize the number of nodes involved in classification of each action. The decision tree is constructed based on the quality of action recognition in individual nodes. A clustering technique is employed to group similar actions and measure quality of per-node identifications. We pose an optimization problem for finding a minimal set of sensor nodes contributing to the action recognition. We then prove that this problem is NP-hard and provide fast greedy algorithms to approximate the solution. Finally, we demonstrate the effectiveness of our distributed algorithm on data collected from five healthy subjects. In particular, our system achieves a 72.4% reduction in the number of active nodes while maintaining 93.3% classification accuracy.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Feb. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.