By Topic

Design of Integrated Dual-Loop \Delta \Sigma Modulated Switching Power Converter for Adaptive Wireless Powering in Biomedical Implants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yikai Wang ; Texas Analog Center for Excellence (TxACE), Univ. of Texas at Dallas, Richardson, TX, USA ; Dongsheng Ma

This paper presents an integrated CMOS switching power converter that accommodates adaptive wireless powering scheme in biomedical implants. It employs the techniques of dual-loop error correction, observation-based oversampling, and Δ- Σ modulation to enhance transient response, line/load regulation, and noise suppression performance. By adopting a digital filter for proportional-derivative compensation, fully on-chip frequency compensation is achieved. In addition, a double sampling technique is introduced to improve the signal processing speed. The converter was designed and fabricated with a 130-nm CMOS process. The measurement results demonstrate 23.2/20.4-μs up-/down-tracking times to full-range reference voltage step changes. A 28.5-mV/V line regulation is achieved, when the supply voltage varies from 1.15 to 1.50 V. In addition, with a 1.20-V supply, the converter responds to a 10%-to-100% load current step change within 22.1 μs. A maximum efficiency of 95.5% is measured at 0.90-V output voltage and 45-mW output power. Noise power spectrum demonstrates a 100-dB signal-to-noise ratio in the converter.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 9 )