Cart (Loading....) | Create Account
Close category search window
 

Generalized Duty-Ratio-Based Pulsewidth Modulation Technique for a Three-to- k Phase Matrix Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmed, S.K.M. ; Texas A&M Univ. at Qatar, Doha, Qatar ; Iqbal, A. ; Abu-Rub, H.

This paper presents a novel topology for a direct ac-ac power converter, called as the “three-to- k” phase matrix converter. The input to the proposed matrix converter configuration is a three-phase fixed voltage and a fixed frequency supply from the grid. The output is a variable voltage and variable frequency ac supply of any number of phases (k phase). However, the discussion is limited here for a k that is equal to odd number of phases. As an example, a “three-to-five” phase matrix converter is utilized for discussion and analysis. This paper also proposes two pulsewidth modulation (PWM) control techniques for the general topology of the “three-to- k” phase matrix converter. This is based on the so-called direct duty ratio PWM (DPWM). In one presented technique, the output voltage is limited to one half of the input voltage. For the other proposed scheme, the output voltage is enhanced to 78.86% of the input voltage. The proposed control algorithm is validated using simulation and an experimental approach.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.