By Topic

Design Aspects of High-Speed High-Power-Density Laminated-Rotor Induction Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gerada, D. ; Res. & Technol. Dept., Cummins Generator Technol., Stamford, UK ; Mebarki, A. ; Brown, N.L. ; Bradley, K.J.
more authors

This paper deals with the considerations associated with the design of high-speed high-power-density laminated-rotor induction machines (IMs). The considerations discussed are described by the design of an actual 10-kW machine, which runs at speeds of up to 75 kr/min with a rated power density of 28 MW/m3 for an electrically assisted turbocharger. Using a developed multidomain design environment which puts equal weight on the electromagnetic, mechanical, and thermal aspects, the rotor split ratio, electric and magnetic loadings, lamination material, rotor-bar material, and rotor-bar shape are identified as important and sensitive parameters in the design of high-speed IMs. Finally, general guidelines for designing high-speed high-power-density IMs are presented.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 9 )