By Topic

Letter-to-Sound Pronunciation Prediction Using Conditional Random Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dong Wang ; CSTR, Univ. of Edinburgh, Edinburgh, UK ; King, S.

Pronunciation prediction, or letter-to-sound (LTS) conversion, is an essential task for speech synthesis, open vocabulary spoken term detection and other applications dealing with novel words. Most current approaches (at least for English) employ data-driven methods to learn and represent pronunciation “rules” using statistical models such as decision trees, hidden Markov models (HMMs) or joint-multigram models (JMMs). The LTS task remains challenging, particularly for languages with a complex relationship between spelling and pronunciation such as English. In this paper, we propose to use a conditional random field (CRF) to perform LTS because it avoids having to model a distribution over observations and can perform global inference, suggesting that it may be more suitable for LTS than decision trees, HMMs or JMMs. One challenge in applying CRFs to LTS is that the phoneme and grapheme sequences of a word are generally of different lengths, which makes CRF training difficult. To solve this problem, we employed a joint-multigram model to generate aligned training exemplars. Experiments conducted with the AMI05 dictionary demonstrate that a CRF significantly outperforms other models, especially if n-best lists of predictions are generated.

Published in:

Signal Processing Letters, IEEE  (Volume:18 ,  Issue: 2 )