By Topic

Motion Field Estimation from Alternate Exposure Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Traditional optical flow algorithms rely on consecutive short-exposed images. In this work, we make use of an additional long-exposed image for motion field estimation. Long-exposed images integrate motion information directly in the form of motion-blur. With this additional information, more robust and accurate motion fields can be estimated. In addition, the moment of occlusion can be determined. Considering the basic signal-theoretical problem in motion field estimation, we exploit the fact that long-exposed images integrate motion information to prevent temporal aliasing. A suitable image formation model relates the long-exposed image to preceding and succeeding short-exposed images in terms of dense 2D motion and per-pixel occlusion/disocclusion timings. Based on our image formation model, we describe a practical variational algorithm to estimate the motion field not only for visible image regions but also for regions getting occluded. Results for synthetic as well as real-world scenes demonstrate the validity of the approach.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:33 ,  Issue: 8 )