By Topic

Revisiting Linear Discriminant Techniques in Gender Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bekios-Calfa, J. ; Dept. de Ing. de Sist. y Comput., Univ. Catolica del ''Norte, Antofagasta, Chile ; Buenaposada, J.M. ; Baumela, L.

Emerging applications of computer vision and pattern recognition in mobile devices and networked computing require the development of resource-limited algorithms. Linear classification techniques have an important role to play in this context, given their simplicity and low computational requirements. The paper reviews the state-of-the-art in gender classification, giving special attention to linear techniques and their relations. It discusses why linear techniques are not achieving competitive results and shows how to obtain state-of-the-art performances. Our work confirms previous results reporting very close classification accuracies for Support Vector Machines (SVMs) and boosting algorithms on single-database experiments. We have proven that Linear Discriminant Analysis on a linearly selected set of features also achieves similar accuracies. We perform cross-database experiments and prove that single database experiments were optimistically biased. If enough training data and computational resources are available, SVM's gender classifiers are superior to the rest. When computational resources are scarce but there is enough data, boosting or linear approaches are adequate. Finally, if training data and computational resources are very scarce, then the linear approach is the best choice.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 4 )
Biometrics Compendium, IEEE