By Topic

Neural and fuzzy methods in handwriting recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
P. D. Gader ; Dept. of Comput. Eng. & Comput. Sci., Missouri Univ., Columbia, MO, USA ; J. M. Keller ; R. Krishnapuram ; Jung-Hsien Chiang
more authors

Handwriting recognition requires tools and techniques that recognize complex character patterns and represent imprecise, common-sense knowledge about the general appearance of characters, words and phrases. Neural networks and fuzzy logic are complementary tools for solving such problems. Neural networks, which are highly nonlinear and highly interconnected for processing imprecise information, can finely approximate complicated decision boundaries. Fuzzy set methods can represent degrees of truth or belonging. Fuzzy logic encodes imprecise knowledge and naturally maintains multiple hypotheses that result from the uncertainty and vagueness inherent in real problems. By combining the complementary strengths of neural and fuzzy approaches into a hybrid system, we can attain an increased recognition capability for solving handwriting recognition problems. This article describes the application of neural and fuzzy methods to three problems: recognition of handwritten words; recognition of numeric fields; and location of handwritten street numbers in address images

Published in:

Computer  (Volume:30 ,  Issue: 2 )