By Topic

Adaptive Motion Data Representation with Repeated Motion Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
I-Chen Lin ; Dept. of Comput. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Jen-Yu Peng ; Chao-Chih Lin ; Ming-Han Tsai

In this paper, we present a representation method for motion capture data by exploiting the nearly repeated characteristics and spatiotemporal coherence in human motion. We extract similar motion clips of variable lengths or speeds across the database. Since the coding costs between these matched clips are small, we propose the repeated motion analysis to extract the referred and repeated clip pairs with maximum compression gains. For further utilization of motion coherence, we approximate the subspace-projected clip motions or residuals by interpolated functions with range-aware adaptive quantization. Our experiments demonstrate that the proposed feature-aware method is of high computational efficiency. Furthermore, it also provides substantial compression gains with comparable reconstruction and perceptual errors.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:17 ,  Issue: 4 )