By Topic

Hybrid Interleaved Space Vector PWM for Ripple Reduction in Modular Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaolin Mao ; Arizona State University, Tempe, USA ; Amit Kumar Jain ; Rajapandian Ayyanar

This paper addresses the problem of optimizing space vector PWM (SVM) for interleaved, parallel-connected, three-phase voltage source converters to reduce total harmonic distortion (THD) of the total line current. A systematic approach is presented for designing hybrid SVM schemes involving multiple sequences, including those based on active state division, and different phase shifts to reduce current ripple. First, the effect of different phase shifts on the current ripple is investigated and it is shown that using standard phase shifts yields performance close to optimal. Second, a zone-division plot is generated based on all sequence-phase shift combinations. The plot shows spatial regions within a sector where a certain sequence-phase shift combination results in the lowest rms current ripple in one switching period, and thus represents the optimal hybrid scheme. Lastly, simplified, easy-to-implement quasi-optimal SVM schemes are derived from the zone-division plot based on specific application requirements, and their performances are compared with the optimal scheme. The application of the proposed approach to a two-converter case is discussed in detail. A simple, quasi-optimal SVM scheme is proposed for grid-connected applications with analytical and experimental results confirming significant reduction in current THD. Finally, extension to three- and four-converter cases is discussed.

Published in:

IEEE Transactions on Power Electronics  (Volume:26 ,  Issue: 7 )