Cart (Loading....) | Create Account
Close category search window
 

Vicarious Calibration of the GOSAT Sensors Using the Railroad Valley Desert Playa

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

17 Author(s)
Kuze, A. ; Japan Aerosp. Exploration Agency, Tsukuba, Japan ; O'Brien, D.M. ; Taylor, T.E. ; Day, J.O.
more authors

Japan's Greenhouse Gases Observing Satellite (GOSAT) was successfully launched into a sun-synchronous orbit on January 23, 2009 to monitor global distributions of carbon dioxide ( CO2) and methane (CH4). GOSAT carries two instruments. The Thermal And Near-infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) measures reflected radiances in the 0.76 μm oxygen band and in the weak and strong CO2 bands at 1.6 and 2.0 μm. The TANSO Cloud and Aerosol Imager (TANSO-CAI) uses four spectral bands at 0.380, 0.674, 0.870, and 1.60 μm to identify clear soundings and to provide cloud and aerosol optical properties. Vicarious calibration was performed at Railroad Valley, Nevada, in the summer of 2009. The site was chosen for its flat surface and high spectral reflectance. In situ measurements of geophysical parameters, such as surface reflectance, aerosol optical thickness, and profiles of temperature, pressure, and humidity, were acquired at the overpass times. Because the instantaneous field of view of TANSO-FTS is large (10.5 km at nadir), the spatially limited reflectance measurements at the field sites were extrapolated to the entire footprint using independent satellite data. During the campaign, six days of measurements were acquired from two different orbit paths. Spectral radiances at the top of the atmosphere were calculated using vector radiative transfer models coupled with ground in situ data. The agreement of the modeled radiance spectra with those measured by the TANSO-FTS is within 7%. Significant degradations in responsivity since launch have been detected in the short-wavelength bands of both TANSO-FTS and TANSO-CAI.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 5 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.