By Topic

Fast Facial Fitting Based on Mixture Appearance Model with 3D Constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiangsheng Huang ; Inst. of Autom., Chinese Acad. of Sci., Beijing, China ; Lujin Gong ; Xiaoyan Wang

Fast facial points fitting plays an important role in applications such as Human-Computer Interaction, entertainment, surveillance, and is highly relevant to the techniques of facial expression analysis, face recognition, 3D face model generation, etc. Active Appearance Models (AAMs) are generative models commonly used to fit face. They are sensitive to illumination and expression changes because they use only raw intensity to build observation models. In this paper, a real time facial points fitting approach using mixture observation models is presented. Furthermore, the 3D modes are used to constrain the AAM so that it can only generate model instances that can also be generated with the 3D modes. Finally, we give a derivative process for fast energy minimization using the inverse compositional algorithm. A coarse-to-fine fitting strategy is used for realtime and robust facial points fitting. We apply this algorithm to facial expression cloning of 3D Avatar system. Experimental results demonstrate that fitting the AAM with mixture observation models and 3D constraint outperforms other classical algorithms.

Published in:

Pattern Recognition (CCPR), 2010 Chinese Conference on

Date of Conference:

21-23 Oct. 2010