By Topic

Normalization of Face Illumination Based on Large-and Small-Scale Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaohua Xie ; School of Mathematics & Computational Science, Sun Yat-Sen University in China, ; Wei-Shi Zheng ; Jianhuang Lai ; Pong C. Yuen
more authors

A face image can be represented by a combination of large-and small-scale features. It is well-known that the variations of illumination mainly affect the large-scale features (low-frequency components), and not so much the small-scale features. Therefore, in relevant existing methods only the small-scale features are extracted as illumination-invariant features for face recognition, while the large-scale intrinsic features are always ignored. In this paper, we argue that both large-and small-scale features of a face image are important for face restoration and recognition. Moreover, we suggest that illumination normalization should be performed mainly on the large-scale features of a face image rather than on the original face image. A novel method of normalizing both the Small-and Large-scale (S&L) features of a face image is proposed. In this method, a single face image is first decomposed into large-and small-scale features. After that, illumination normalization is mainly performed on the large-scale features, and only a minor correction is made on the small-scale features. Finally, a normalized face image is generated by combining the processed large-and small-scale features. In addition, an optional visual compensation step is suggested for improving the visual quality of the normalized image. Experiments on CMU-PIE, Extended Yale B, and FRGC 2.0 face databases show that by using the proposed method significantly better recognition performance and visual results can be obtained as compared to related state-of-the-art methods.

Published in:

IEEE Transactions on Image Processing  (Volume:20 ,  Issue: 7 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal