By Topic

A New Weighted Fuzzy C-Means Clustering Algorithm for Remotely Sensed Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chih-Cheng Hung ; Sch. of Comput. & Software Eng., Southern Polytech. State Univ., Marietta, GA, USA ; Kulkarni, S. ; Bor-Chen Kuo

Fuzzy clustering model is an essential tool to find the proper cluster structure of given data sets in pattern and image classification. In this paper, a new weighted fuzzy C-Means (NW-FCM) algorithm is proposed to improve the performance of both FCM and FWCM models for high-dimensional multiclass pattern recognition problems. The methodology used in NW-FCM is the concept of weighted mean from the nonparametric weighted feature extraction (NWFE) and cluster mean from discriminant analysis feature extraction (DAFE). These two concepts are combined in NW-FCM for unsupervised clustering. The main features of NW-FCM, when compared to FCM, are the inclusion of the weighted mean to increase the accuracy, and, when compared to FWCM, the centroid of each cluster is included to increase the stability. The motivation of this work is to meliorate the well-known fuzzy C-Means algorithm (FCM) and a recently proposed fuzzy weighted C-Means algorithm (FWCM). Our finding is that the proposed algorithm gives greater classification accuracy and stability than that of FCM and FWCM. Experimental results on both synthetic and real data demonstrate that the proposed clustering algorithm will generate better clustering results than those of FCM and FWCM algorithms, in particularly for hyperspectral images.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:5 ,  Issue: 3 )