By Topic

Energy Efficiency in the Future Internet: The Role of Optical Packet Switching and Optical-Label Switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yoo, S.J.B. ; Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA

This paper reviews the energy efficiency of optical-packet-switching (OPS) systems in comparison with electronic packet switching and hybrid packet switching in the context of future networks. The paper will first discuss the energy efficiency metrics that should include considerations for life-cycle analysis, applications, and network-wide goodput. The state-of-the-art electronic packet switching router is currently energy-limited in scalability as it is difficult to implement a router with more than 1 MW power consumption. The OPS router that imitates electronic router's store-and-forward schemes is expected to suffer poor energy efficiency due to the complexity in the high-speed control plane necessary to control many optical buffer stages. The hybrid optical router achieves easier buffer management but its energy efficiency is still limited by the store-and-forward approach. The OPS router based on all-optical contention resolution without relying on store-and-forward method can keep the control plane very simple and achieve very high energy efficiency. Network-wide performance and energy efficiency in the context of generalized multiprotocol label switching (GMPLS)- and multiprotocol label switching (MPLS)-based networking are also discussed.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 2 )