By Topic

Long-Reach Coherent WDM PON Employing Self-Polarization-Stabilization Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Cho, K.Y. ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Tanaka, K. ; Sano, T. ; Jung, S.P.
more authors

We propose a simple self-polarization-stabilization technique for the wavelength-division-multiplexed passive optical network implemented with reflective semiconductor optical amplifiers (RSOAs) and self-homodyne coherent receivers. By placing a 45° Faraday rotator in front of the RSOA in the optical network unit, the state-of-polarization of the upstream signal becomes orthogonal to that of the linearly polarized seed light at the input of the coherent receiver regardless of the birefringence in the transmission link. Thus, we can achieve the polarization stability of the upstream signal at the input of the coherent receiver. We first implement a self-homodyne receiver by using the proposed self-polarization-stabilization technique and measure its sensitivity by using 2.5-Gb/s binary phase-shift keying signals in the laboratory. The result shows an excellent receiver sensitivity of -46.4 dBm. We also confirm the efficacy of the proposed technique in the transmission experiment over 68-km long link partially composed of installed (buried and aerial) fibers. No significant degradation in the receiver sensitivity is observed during the 10-h experiment despite the large polarization fluctuations occurred in these installed fibers.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 4 )