By Topic

The Effect of Layout Topology on Single-Event Transient Pulse Quenching in a 65 nm Bulk CMOS Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ahlbin, J.R. ; Vanderbilt Univ., Nashville, TN, USA ; Gadlage, M.J. ; Ball, D.R. ; Witulski, A.W.
more authors

Heavy-ion microbeam and broadbeam data are presented for a 65 nm bulk CMOS process showing the existence of pulse quenching at normal and angular incidence for designs where the pMOS transistors are in common n-wells or isolated in separate n-wells. Experimental data and simulations show that pulse quenching is more prevalent in the common n-well design than the separate n-well design, leading to significantly reduced SET pulsewidths and SET cross-section in the common n-well design.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:57 ,  Issue: 6 )