By Topic

A Novel Method for Detection of the Transition Between Atrial Fibrillation and Sinus Rhythm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chao Huang ; Key Lab. of Biomed. Eng. of Educ. Minist., Zhejiang Univ., Hangzhou, China ; Shuming Ye ; Hang Chen ; Dingli Li
more authors

Automatic detection of atrial fibrillation (AF) for AF diagnosis, especially for AF monitoring, is necessarily desirable for clinical therapy. In this study, we proposed a novel method for detection of the transition between AF and sinus rhythm based on RR intervals. First, we obtained the delta RR interval distri bution difference curve from the density histogram of delta RR intervals, and then detected its peaks, which represented the AF events. Once an AF event was detected, four successive steps were used to classify its type, and thus, determine the boundary of AF: 1) histogram analysis; 2) standard deviation analysis; 3) numbering aberrant rhythms recognition; and 4) Kolmogorov-Smirnov (K-S) test. A dataset of 24-h Holter ECG recordings (n = 433) and two MIT-BIH databases (MIT-BIH AF database and MIT-BIH nor mal sinus rhythm (NSR) database) were used for development and evaluation. Using the receiver operating characteristic curves for determining the threshold of the K-S test, we have achieved the highest performance of sensitivity and specificity (SP) (96.1% and 98.1%, respectively) for the MIT-BIH AF database, compared with other previously published algorithms. The SP was 97.9% for the MIT-BIH NSR database.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 4 )