We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Boolean functions classification via fixed polarity Reed-Muller forms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chien-Chung Tsai ; Mentor Graphics Corp., Wilsonville, OR, USA ; Marek-Sadowska, M.

In this paper, we present a new method to characterize completely specified Boolean functions. The central theme of the classification is the functional equivalence (a.k.a. Boolean matching). Two Boolean functions are equivalent if there exists input permutation, input negation, or output negation that can transform one function to the other. We have derived a method that can efficiently identify equivalence classes of Boolean functions. The well-known canonical Fixed Polarity Reed-Muller (FPRM) forms are used as a powerful analysis tool. The necessary transformations to derive one function from the other are inherent in the FPRM representations. To identify uniquely each equivalence class, a set of well-known characteristics of Boolean functions and their variables (including linearity, symmetry, total symmetry, self-complement, and self-duality) are employed. It is shown that all the equivalence classes of four-variable functions are uniquely identified where majority of the classes have a single FPRM form as their representative. The Boolean matching has applications in technology mapping and in design of standard cell libraries.

Published in:

Computers, IEEE Transactions on  (Volume:46 ,  Issue: 2 )