By Topic

Satellite image classification using sparse codes of multiple features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guofeng Sheng ; Signal Process. Lab., Wuhan Univ., Wuhan, China ; Wen Yang ; Lijun Chen ; Hong Sun

This paper presents a new method for satellite image classification. Specifically, we make two main contributions: (1) we introduce the sparse coding method for high-resolution satellite image classification; (2) we effectively combine a set of diverse and complementary features-SIFT, Color Histogram and Gabor to further improve the performance. A two-stage linear SVM classifier is designed for this purpose, which firstly generate probability vectors for each image with SIFT, Color Histogram and Gabor features respectively and then the generated probability vectors with different features are concatenated as the input features of the second stage of classification. In the experiment of satellite image categorization, we And that, in terms of classification accuracy, the suggested classification method using sparse codes of multiple features achieves very promising performances and the linear kernel can remarkably reduce the complexity of the SVM classifier.

Published in:

Signal Processing (ICSP), 2010 IEEE 10th International Conference on

Date of Conference:

24-28 Oct. 2010