By Topic

MIMiC: Multimodal Interactive Motion Controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Okwechime, D. ; Dept. of Centre for Vision, Speech, & Signal Process., Univ. of Surrey, Guildford, UK ; Eng-Jon Ong ; Bowden, R.

We introduce a new algorithm for real-time interactive motion control and demonstrate its application to motion captured data, prerecorded videos, and HCI. Firstly, a data set of frames are projected into a lower dimensional space. An appearance model is learnt using a multivariate probability distribution. A novel approach to determining transition points is presented based on k-medoids, whereby appropriate points of intersection in the motion trajectory are derived as cluster centers. These points are used to segment the data into smaller subsequences. A transition matrix combined with a kernel density estimation is used to determine suitable transitions between the subsequences to develop novel motion. To facilitate real-time interactive control, conditional probabilities are used to derive motion given user commands. The user commands can come from any modality including auditory, touch, and gesture. The system is also extended to HCI using audio signals of speech in a conversation to trigger nonverbal responses from a synthetic listener in real-time. We demonstrate the flexibility of the model by presenting results ranging from data sets composed of vectorized images, 2-D, and 3-D point representations. Results show real-time interaction and plausible motion generation between different types of movement.

Published in:

Multimedia, IEEE Transactions on  (Volume:13 ,  Issue: 2 )