By Topic

Boundary Diffracted Wave and Incremental Geometrical Optics: A Numerically Efficient and Physically Appealing Line-Integral Representation of Radiation Integrals. Aperture Scalar Case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Matteo Albani ; Dip. Ingegneria dell'Informazione, Università di Siena, Siena, Italy

This paper presents a novel formulation to reduce radiation integrals to line integrals. Such a reduction is exact for Kirchhoff aperture radiation integrals and physical optics (PO) scattering from flat soft/hard (perfectly conducting) plates, illuminated by a spherical source, but can be effectively extended in an approximate version to more general configurations. The advantage of our approach is that the integrand of the line integral along the rim of the radiating surface is free from singularities and can be easily integrated at all the observation aspects, including geometrical optics shadow boundaries. Conversely, at those aspects, existing formulations exhibit, in the integrand, a pole singularity that renders the numerical integration inaccurate or time consuming, since it requires adaptive integration routines. This was a main concern in the use of this kind of approach for the time reduction in the numerical calculation of aperture/scattering radiation integrals, which is overcome by our approach. Also, the novel result presents a neat ray interpretation which is physically appealing and allows for the heuristic extension of the approach to non-exact cases (e.g., arbitrary impedance boundary conditions or curved surfaces) using standard ray approximations. Beside the already known boundary diffraction wave (BDW), which is an incremental wave excited by the incident field and arising from the rim of the surface, a further term called incremental geometrical optics (IGO) is introduced. This novel term is an elementary portion of the direct field arising from the source and impinging at the observation point; it is able to cancel the BDW singularity thus rendering the whole integrand smooth. For the sake of simplicity, the BDW+IGO theory is here presented with reference to the simplest scalar case of aperture radiation.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:59 ,  Issue: 2 )