By Topic

Formation of Infrared Regions of Transparency in One-Dimensional Silicon Photonic Crystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baldycheva, A. ; Dept. of Electron. & Electr. Eng., Trinity Coll., Dublin, Ireland ; Tolmachev, V.A. ; Perova, T.S. ; Berwick, K.

The optical properties of three-component one-dimensional photonic crystal (1-D PC) structures were investigated by modeling them as two-component PCs with an additional regular t-layer, using the gap map approach and the transfer matrix method. Numerical results demonstrate that the introduction of the t-layer affects the properties of the high-order photonic band gaps, replacing them with transmission bands and creating regions of transparency over certain wavelength ranges. For the first time, a map of the transmission bands for a three-component 1-D PC was generated. This map constitutes a unique design tool for infrared optical filters for silicon-based photonic integrated circuits.

Published in:

Photonics Technology Letters, IEEE  (Volume:23 ,  Issue: 4 )