Cart (Loading....) | Create Account
Close category search window

A 0.18- \mu{\hbox {m}} Dual-Gate CMOS Device Modeling and Applications for RF Cascode Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong-Yeh Chang ; Dept. of Electr. Eng., Nat. Central Univ., Jhongli, Taiwan ; Kung-Hao Liang

A merged-diffusion dual-gate CMOS device model is presented in this paper. The proposed large-signal model consists of two intrinsic BSIM3v3 nonlinear models and parasitic components. The parasitic elements, including the substrate networks, the distributed resistances, and the inductances, are extracted from the measured S-parameters. In order to verify the model accuracy, a cascode configuration with the proposed dual-gate device is employed in a low-noise amplifier. The dual-gate model is also evaluated with power sweep and load-pull measurements. In addition, a doubly balanced dual-gate mixer is successfully demonstrated using the proposed model. The measured results agree with the simulated results using the proposed device model for both linear and nonlinear applications. The advanced large-signal dual-gate CMOS model can be further used as an RF sub-circuit cell for simplifying the design procedure.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.