By Topic

Command State-Based Modifiable Walking Pattern Generation on an Inclined Plane in Pitch and Roll Directions for Humanoid Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Young-Dae Hong ; Department of Electrical Engineering , Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea ; Bum-Joo Lee ; Jong-Hwan Kim

Previous research related to walking on an inclined plane for humanoid robots, including the 3-D linear inverted pendulum model (3D-LIPM) approach, were unable to modify walking period, step length, and walking direction independently without any additional step for adjusting the center of mass (CoM) motion. Moreover, the inclination along the pitch direction was only considered for walking. To solve these problems, a novel command state (CS)-based modifiable walking pattern generator for humanoid robots is proposed for modifiable walking on an inclined plane in both pitch and roll directions. The dynamic equation of the 3D-LIPM on the inclined plane in both pitch and roll directions is derived to obtain the CoM motion. Using the CoM motion, a method for modifiable walking pattern generation on the inclined plane is developed to follow a given CS composed of walking periods, step lengths, and walking directions for both legs. The effectiveness of the proposed walking pattern generator is demonstrated through both simulation and experiment for the small-sized humanoid robot, HanSaRam-IX (HSR-IX).

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:16 ,  Issue: 4 )