By Topic

Duodenum Identification Mechanism for Capsule Endoscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Woo, S.H. ; Sch. of Electr. Eng. & Comput. Sci., Kyungpook Nat. Univ., Daegu, South Korea ; Mohy-Ud-Din, Z. ; Cho, J.H.

The aim of this study is to implement a duodenum identification mechanism for capsule endoscopes because commercially available capsule endoscopes sometimes present a false negative diagnosis of the duodenum. One reason for the false negative diagnosis is that the duodenum is the fastest moving part within the gastrointestinal tract and the current frame rate of the capsule is not fast enough. When the capsule can automatically identify that it is in the duodenum, the frame rate of the capsule can be temporarily increased to reduce the possibility of a false negative diagnosis. This study proposes a mechanism to identify the duodenum using capacitive proximity sensors that can distinguish the surrounding tissue and transmit data using RF communication. The implemented capsule (D11 mm × L22 mm) was smaller than the commercially available capsule endoscopes, and power consumption was as low as 0.642 mW. Preexperiments were con ducted to select an appropriate electrode width in order to increase the signal-to-noise ratio (SNR), and in vitro experiments were con ducted to verify whether the implemented capsule could identify the duodenum within 3 s. The experiment showed that the identification rate of duodenum was 93% when the velocity of the capsule was less than 1 cm/s.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 4 )