By Topic

A probabilistic approach to learning a visually grounded language model through human-robot interaction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dindo, H. ; Dept. of Comput. Sci., Univ. of Palermo, Palermo, Italy ; Zambuto, D.

Language is among the most fascinating and complex cognitive activities that develops rapidly since the early months of infants' life. The aim of the present work is to provide a humanoid robot with cognitive, perceptual and motor skills fundamental for the acquisition of a rudimentary form of language. We present a novel probabilistic model, inspired by the findings in cognitive sciences, able to associate spoken words with their perceptually grounded meanings. The main focus is set on acquiring the meaning of various perceptual categories (e.g. red, blue, circle, above, etc.), rather than specific world entities (e.g. an apple, a toy, etc.). Our probabilistic model is based on a variant of multi-instance learning technique, and it enables a robotic platform to learn grounded meanings of adjective/noun terms. The systems could be used to understand and generate appropriate natural language descriptions of real objects in a scene, and it has been successfully tested on the NAO humanoid robotic platform.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010