By Topic

Fuzzy control for enforcing energy efficiency in high-performance 3D systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sabry, M.M. ; Embedded Syst. Lab. (ESL), Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Coskun, A.K. ; Atienza, D.

3D stacked circuits reduce communication delay in multicore system-on-chips (SoCs) and enable heterogeneous integration of cores, memories, sensors, and RF devices. However, vertical integration of layers exacerbates the reliability and thermal problems, and cooling is a limiting factor in multi-tier systems. Liquid cooling is a highly efficient solution to overcome the accelerated thermal problems in 3D architectures; however, liquid cooling brings new challenges in modeling and runtime management. This paper proposes a novel controller for improving energy efficiency and reliability in 3D systems through liquid cooling management and dynamic voltage frequency scaling (DVFS). The proposed fuzzy controller adjusts the liquid flow rate at runtime to match the cooling demand for preventing energy wastage of over-cooling and for maintaining a stable thermal profile. The DVFS decisions provide chip-level energy savings and help balancing the temperature across the system. Experimental results on 8- and 16-core multicore SoCs show that the controller prevents the system to exceed the given threshold temperature while reducing cooling energy by up to 50% and system-level energy by up to 21% in comparison to using a static worst-case flow rate setting.

Published in:

Computer-Aided Design (ICCAD), 2010 IEEE/ACM International Conference on

Date of Conference:

7-11 Nov. 2010