By Topic

Unified theory of real-time task scheduling and dynamic voltage/frequency Scaling on MPSoCs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hessam Kooti ; Computer Science Department, University of California, Irvine, Irvine, California 92697 ; Eli Bozorgzadeh

Dynamic voltage/frequency scaling (DVFS) and adaptive body biasing (ABB) have shown to effectively reduce dynamic and leakage energy consumption in real-time embedded systems. Although these techniques exploit the slack time on a given task ordering, the task ordering may not provide a slack time distribution that DVFS/ABB can benefit from and this can limit the potential energy saving such techniques can provide. In this paper, we present an optimal network flow based solution for simultaneous static real-time scheduling and energy minimization (DVFS and ABB) on multiprocessors. Results show that our optimal solution reduces the energy dissipation by 47.84%, 26.21% and 17.46%, on average, in comparison with no-DVFS execution, voltage scaling algorithm with virtual continuous speed and an optimal energy minimization algorithm without task re-ordering, respectively.

Published in:

2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)

Date of Conference:

7-11 Nov. 2010