Cart (Loading....) | Create Account
Close category search window
 

Unsupervised classification of remotely sensed images using Gaussian mixture models and particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ari, C. ; Dept. of Electr. & Electron. Eng., Bilkent Univ., Ankara, Turkey ; Aksoy, S.

Gaussian mixture models (GMM) are widely used for unsupervised classification applications in remote sensing. Expectation-Maximization (EM) is the standard algorithm employed to estimate the parameters of these models. However, such iterative optimization methods can easily get trapped into local maxima. Researchers use population-based stochastic search algorithms to obtain better estimates. We present a novel particle swarm optimization-based algorithm for maximum likelihood estimation of Gaussian mixture models. The proposed approach provides solutions for important problems in effective application of population-based algorithms to the clustering problem. We present a new parametrization for arbitrary covariance matrices that allows independent updating of individual parameters during the search process. We also describe an optimization formulation for identifying the correspondence relations between different parameter orderings of candidate solutions. Experiments on a hyperspectral image show better clustering results compared to the commonly used EM algorithm for estimating GMMs.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International

Date of Conference:

25-30 July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.