By Topic

Cost-effective integration of three-dimensional (3D) ICs emphasizing testing cost analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yibo Chen ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA ; Dimin Niu ; Yuan Xie ; Chakrabarty, K.

Three-dimensional (3D) ICs promise to overcome barriers in interconnect scaling by leveraging fast, dense inter-die vias, thereby offering benefits of improved performance, higher memory bandwidth, smaller form factors, and heterogeneous integration. However, when deciding to adopt this emerging technology as a mainstream design approach, designers must consider the cost of 3D integration. IC testing is a key factor that affects the final product cost, and it could be a major portion of the total IC cost. In 3D IC design, various testing strategies and different integration methods could affect the final product cost dramatically, and the interaction with other cost factors could result in various trade-offs. This paper develops a comprehensive and parameterized testing cost model for 3D IC integration, and analyzes the trade-offs associated with testing strategies and testing circuit overheads. With the proposed testing cost model, designers can explore the most cost-effective integration and testing strategies for 3D IC chips.

Published in:

Computer-Aided Design (ICCAD), 2010 IEEE/ACM International Conference on

Date of Conference:

7-11 Nov. 2010