Cart (Loading....) | Create Account
Close category search window
 

Rover control based on an optimal torque distribution - Application to 6 motorized wheels passive rover

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Krebs, A. ; Autonomous Syst. Lab. (ASL), Swiss Fed. Inst. of Technol. Zurich (ETHZ), Zürich, Switzerland ; Risch, F. ; Thueer, T. ; Maye, J.
more authors

The capability to overcome terrain irregularities or obstacles, named terrainability, is mostly dependant on the suspension mechanism of the rover and its control. For a given wheeled robot, the terrainability can be improved by using a sophisticated control, and is somewhat related to minimizing wheel slip. The proposed control method, named torque control, improves the rover terrainability by taking into account the whole mechanical structure. The rover model is based on the Newton-Euler equations and knowing the complete state of the mechanical structures allows us to compute the force distribution in the structure, and especially between the wheels and the ground. Thus, a set of torques maximizing the traction can be used to drive the rover. The torque control algorithm is presented in this paper, as well as tests showing its impact and improvement in terms of terrainability. Using the CRAB rover platform, we show that the torque control not only increases the climbing performance but also limits odometric errors and reduces the overall power consumption.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.