By Topic

Stochastic gradient descent for robust inverse photomask synthesis in optical lithography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ningning Jia ; Imaging Systems Laboratory, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong ; Edmund Y. Lam

Optical lithography is a critical step in the semiconductor manufacturing process, and one key problem is the design of the photomask for a particular circuit pattern, given the optical aberrations and diffraction effects associated with the small feature size. Inverse lithography synthesizes an optimal mask by treating the design as an image synthesis inverse problem. To date, much effort is dedicated to solving it for some nominal process conditions. However, the small feature size also suggests that the effect of process variations is more pronounced. In this paper, we design a mask that is robust against focus variations within the inverse lithography framework. Each iteration involves more computation than a similar method designed for the nominal conditions, but we simplify the task by using stochastic gradient descent, which is a technique from machine learning. Simulation shows that the proposed algorithm is effective in producing robust masks.

Published in:

2010 IEEE International Conference on Image Processing

Date of Conference:

26-29 Sept. 2010