By Topic

Frontal face detection for surveillance purposes using dual Local Binary Patterns features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Louis, W. ; Edward S. Rogers Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Plataniotis, K.N.

Face detection in video sequence is becoming popular in surveillance applications, but the usage of large number of features and the long training time are persistent problems. This paper integrates two types of Local Binary Patterns (LBP) features in order to achieve a high detection rate with a high discriminative power face detector. First LBP feature is a novel way of using the Circular LBP, in which the pixels of the image are targeted; it is a non-computationally expensive feature extraction. The second LBP feature is the LBP Histogram, in which regions in the image are targeted; it is more computationally expensive than Circular LBP features but has higher discriminative power. The proposed detector is examined on real-life low-resolution surveillance sequence. Conducted experiments show that the proposed detector achieves 98% detection rate in comparison to 91% for the Lienhart detector. The proposed detector tolerates wide range of illumination changes.

Published in:

Image Processing (ICIP), 2010 17th IEEE International Conference on

Date of Conference:

26-29 Sept. 2010