By Topic

Multi-spectral remote sensing image registration via spatial relationship analysis on sift keypoints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mahmudul Hasan ; School of Engineering and Information Technology, University College, The University of New South Wales, Australian Defence Force Academy, Canberra, ACT, Australia ; Xiuping Jia ; Antonio Robles-Kelly ; Jun Zhou
more authors

Multi-sensor image registration is a challenging task in remote sensing. Considering the fact that multi-sensor devices capture the images at different times, multi-spectral image registration is necessary for data fusion of the images. Several conventional methods for image registration suffer from poor performance due to their sensitivity to scale and intensity variation. The scale invariant feature transform (SIFT) is widely used for image registration and object recognition to address these problems. However, directly applying SIFT to remote sensing image registration often results in a very large number of feature points or keypoints but a small number of matching points with a high false alarm rate. We argue that this is due to the fact that spatial information is not considered during the SIFT-based matching process. This paper proposes a method to improve SIFT-based matching by taking advantage of neighborhood information. The proposed method generates more correct matching points as the relative structure in different remote sensing images are almost static.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International

Date of Conference:

25-30 July 2010