By Topic

Toward a multi-feature approach to Content-Based Copy Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Corvaglia, M. ; DII-SCL, Univ. of Brescia, Brescia, Italy ; Guerrini, F. ; Leonardi, R. ; Migliorati, P.
more authors

Video Content-Based Copy Detection (CBCD) is an emergent research field which is targeted to the identification of modified copies of an original clip in a given dataset, e.g., on the Internet. As opposed to digital watermarking, the content itself is used to uniquely identify the video through the extraction of features that need to be robust against a certain set of predetermined video attacks. This paper advocates the use of multiple features together with detection performance estimation to construct a flexible video signature instead of a fixed, single feature based one. To combine diverse features, a normalized linear combination is also proposed. The system performance boost is evaluated through the MPEG Video Signature Core Experiment dataset and experimental results show how the proposed signature scheme can achieve impressive improvements with respect to the single feature approach.

Published in:

Image Processing (ICIP), 2010 17th IEEE International Conference on

Date of Conference:

26-29 Sept. 2010