By Topic

Nonparametric image interpolation and dictionary learning using spatially-dependent Dirichlet and beta process priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paisley, J. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Mingyuan Zhou ; Sapiro, G. ; Carin, L.

We present a Bayesian model for image interpolation and dictionary learning that uses two nonparametric priors for sparse signal representations: the beta process and the Dirichlet process. Additionally, the model uses spatial information within the image to encourage sharing of information within image subregions. We derive a hybrid MAP/Gibbs sampler, which performs Gibbs sampling for the latent indicator variables and MAP estimation for all other parameters. We present experimental results, where we show an improvement over other state-of-the-art algorithms in the low-measurement regime.

Published in:

Image Processing (ICIP), 2010 17th IEEE International Conference on

Date of Conference:

26-29 Sept. 2010