System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

An active-passive variable stiffness elastic actuator for safety robot systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ren-Jeng Wang ; Mech. Eng. Dept., Nat. Taiwan Univ., Taipei, Taiwan ; Han-Pang Huang

For classical robotic applications, robotic systems consist of servo motors, high-ratio reduction and rigid links; mechanical designers prefer to designing robotic applications as stiff as possible to make robots manipulate with remarkable speed and precise position movements. However, these robotic applications can hardly interact with people and environments under safety constraints. It poses the very fundamental problem of ensuring safety to humans and protecting the robot. This paper presents an active-passive variable stiffness elastic actuator (APVSEA) which is designed for safety robot systems. The APVSEA consists of two DC-motors: one is used to control the position of the joint and the other is used to adjust the stiffness of the system. The stiffness is generated by two antagonistically nonlinear springs. By changing the preload length of the two antagonistically nonlinear springs, APVSEA has the ability to minimize large impact forces due to shocks, to safely interact with the user and/or become as stiff as possible to make precise position movements or trajectory tracking control easier. Experiment results are presented to show that APVSEA is capable of providing precise position movements while offering safe human-robot interaction.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010