Cart (Loading....) | Create Account
Close category search window
 

Gaussian mixture models for spots in microscopy using a new split/merge em algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kangyu Pan ; Dept. of Electron. & Electr. Eng., Trinity Coll. Dublin, Dublin, Ireland ; Kokaram, A. ; Hillebrand, J. ; Ramaswami, M.

In confocal microscopy imaging, target objects are labeled with fluorescent markers in the living specimen, and usually appear as spots in the observed images. Spot detection and analysis is therefore an important task but it is still heavily reliant on manual analysis. In this paper, a novel shape modeling algorithm is proposed for automating the detection and analysis of the spots of interest. The algorithm exploits a Gaussian mixture model to characterize the spatial intensity distribution of the spots, and estimates parameters using a novel split-and-merge expectation maximization (SMEM) algorithm. In previous work the split step is random which is an issue for biological analysis where repeatability is important. The new split/merge steps are deterministic, hence more useful, and further do not impact adversely on the optimality of the final result.

Published in:

Image Processing (ICIP), 2010 17th IEEE International Conference on

Date of Conference:

26-29 Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.