By Topic

Flow-based scatterplots for sensitivity analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Hsuan Chan ; Univ. of California at Davis, Davis, CA, USA ; Correa, C. ; Kwan-Liu Ma

Visualization of multi-dimensional data is challenging due to the number of complex correlations that may be present in the data but that are difficult to be visually identified. One of the main causes for this problem is the inherent loss of information that occurs when high-dimensional data is projected into 2D or 3D. Although 2D scatterplots are ubiquitous due to their simplicity and familiarity, there are not a lot of variations on their basic metaphor. In this paper, we present a new way of visualizing multidimensional data using scatterplots. We extend 2D scatterplots using sensitivity coefficients to highlight local variation of one variable with respect to another. When applied to a scatterplot, these sensitivities can be understood as velocities, and the resulting visualization resembles a flow field. We also present a number of operations, based on flow-field analysis, that help users navigate, select and cluster points in an efficient manner. We show the flexibility and generality of this approach using a number of multidimensional data sets across different domains.

Published in:

Visual Analytics Science and Technology (VAST), 2010 IEEE Symposium on

Date of Conference:

25-26 Oct. 2010