Cart (Loading....) | Create Account
Close category search window
 

Slip-ratio-coordinated control of planetary exploration robots traversing over deformable rough terrain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Ding ; Sch. of Mechatron. Eng., Harbin Inst. of Technol., Harbin, China ; Haibo Gao ; Zongquan Deng ; Zhen Liu

Wheeled exploration robots are prone to slip during locomotion on deformable rough planetary terrain, which leads to loss of velocity and extra consumption of energy. Experimental results show that the power required for driving a wheel is an increasing function of its slip ratio; further, the tractive efficiency decreases rapidly after it reaches a peak value when the slip ratio is between 0.05 and 0.2. In this study, wheel-soil interaction terramechanics, which considers the slip ratio as an important state variable, is applied to analyze the quasi-static equations of a planar robot system. The slip ratios of wheels are controllable, but the degree of freedom is the number of wheels minus 1. A generalized algorithm for distributing the slip ratios of all the wheels of a robot to optimize the energy consumption is presented. Experimental and simulation results show that the “equal slip ratio” is at least a sub-optimal solution for optimizing energy consumption. Further, a more robust control method has been developed; this methods aims to equalize the slip ratios of all the wheels while maintaining a constant body velocity on rough terrains, without solving the values of the slip ratios. This method is verified by controlling a virtual four-wheeled robot using dynamics simulations.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.