By Topic

Comparison of CBF, ANN and SVM classifiers for object based classification of high resolution satellite images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Buddhiraju, K.M. ; Centre of Studies in Resources Eng., Indian Inst. of Technol. Bombay, Mumbai, India ; Rizvi, I.A.

Image classification is an important task for many aspects of global change studies and environmental applications. This paper emphasizes on the analysis and usage of different advanced image classification techniques like Cloud Basis Functions (CBFs) Neural Networks, Artificial Neural Networks (ANN) and Support Vector Machines (SVM) for object based classification to get better accuracy. For comparison, adaptive Gaussian filtered images were classified using ANN and post-processed using relaxation labeling process (RLP). The results are demonstrated using high spatial resolution remotely sensed images.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International

Date of Conference:

25-30 July 2010