By Topic

Fast object detection using boosted co-occurrence histograms of oriented gradients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Haoyu Ren ; Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Beijing, 100190, China ; Cher-Keng Heng ; Wei Zheng ; Luhong Liang
more authors

Co-occurrence histograms of oriented gradients (CoHOG) are powerful descriptors in object detection. In this paper, we propose to utilize a very large pool of CoHOG features with variable-location and variable-size blocks to capture salient characteristics of the object structure. We consider a CoHOG feature as a block with a special pattern described by the offset. A boosting algorithm is further introduced to select the appropriate locations and offsets to construct an efficient and accurate cascade classifier. Experimental results on public datasets show that our approach simultaneously achieves high accuracy and fast speed on both pedestrian detection and car detection tasks.

Published in:

2010 IEEE International Conference on Image Processing

Date of Conference:

26-29 Sept. 2010