By Topic

Analysis of vegetation index NDVI anisotropy to improve the accuracy of the GOES-R green vegetation fraction product

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yuhong Tian ; I.M. Syst. Group at NOAA-NESDIS-STAR, Camp Springs, MD, USA ; Romanov, P. ; Yunyue Yu ; Hui Xu
more authors

Green Vegetation Fraction (GVF) is the fraction of area within the instrument footprint occupied by green vegetation. Information on GVF is needed to estimate the surface energy balance in numerical weather prediction (NWP) and climate models. For the Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced Baseline Imager (ABI) algorithm development, a normalized difference vegetation index (NDVI) based linear mixture algorithm has been chosen to convert NDVI into GVF. The GVF algorithm has been developed and tested using a proxy dataset from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the European Meteosat Second Generation (MSG) geostationary satellite. Studies of SEVIRI data have shown that NDVI strongly depends upon the viewing and illumination geometry of observations, especially over dense vegetation. If not corrected, this angular anisotropy of NDVI causes substantial spurious diurnal variations in the derived GVF. An empirical kernel-driven model to correct NDVI for angular anisotropy has been developed and implemented in the GVF algorithm. Its kernel weights for the GVF algorithm were also determined empirically from the SEVIRI clear-sky data. The preliminary validation estimates show that the model's performance is good.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International

Date of Conference:

25-30 July 2010