By Topic

Multi-target tracking using long-term stochastic associations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ting-Yueh Jeng ; Dept. of Electr. Eng., Univ. of California, Riverside, CA, USA ; Bi Song ; Staudt, E. ; Min Liu
more authors

Maintaining the stability of tracks on multiple targets in video over extended time periods remains a challenging problem. A few methods which have recently shown encouraging results in this direction rely on learning context models or the availability of training data. However, this may not be feasible in many application scenarios. Moreover, tracking methods should be able to work across multiple resolutions of the video. In this paper, we consider the problem of long-term tracking in video in application domains where context information is not available a priori, nor can it be learned online. We build our solution on the hypothesis that most existing trackers can obtain reasonable short-term tracks (tracklets). By analyzing the statistical properties of these tracklets, we develop associations between them so as to come up with longer tracks. On multiple real-life video sequences spanning low and high resolution data, we show the ability to accurately track over extended time periods.

Published in:

Image Processing (ICIP), 2010 17th IEEE International Conference on

Date of Conference:

26-29 Sept. 2010