Cart (Loading....) | Create Account
Close category search window
 

Active model based predictive control for unmanned helicopter in full flight envelope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dalei Song ; State Key Lab. of Robot., Chinese Acad. of Sci., Beijing, China ; Juntong Qi ; Jianda Han ; Guangjun Liu

For the control of unmanned helicopters in full flight envelope, an active model based control scheme is developed in this paper. An adaptive set-membership filter (ASMF) is used to online estimate both the model error due to flight mode change and its boundary, taking advantage of ASMF, so that the model error can be assumed unknown but bounded (UBB). The proposed approach is practical because the model error depends on both helicopter dynamics and flight states, and may not be assumed as white noise. An active modeling based stationary increment predictive control (AMSIPC) is also proposed based on the estimated model error and its boundary to optimally compensate the model error, as well as the aerodynamics time delay. The proposed method has been implemented on the ServoHeli-20 unmanned helicopter platform and experimentally tested, and the results have demonstrated its effectiveness.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.