By Topic

Imitation learning of globally stable non-linear point-to-point robot motions using nonlinear programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khansari-Zadeh, S.M. ; LASA Lab., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Billard, A.

This paper presents a methodology for learning arbitrary discrete motions from a set of demonstrations. We model a motion as a nonlinear autonomous (i.e. time-invariant) dynamical system, and define the sufficient conditions to make such a system globally asymptotically stable at the target. The convergence of all trajectories is ensured starting from any point in the operational space. We propose a learning method, called Stable Estimator of Dynamical Systems (SEDS), that estimates parameters of a Gaussian Mixture Model via an optimization problem under non-linear constraints. Being time-invariant and globally stable, the system is able to handle both temporal and spatial perturbations, while performing the motion as close to the demonstrations as possible. The method is evaluated through a set of robotic experiments.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010