By Topic

Improved updating of Euclidean distance maps and Voronoi diagrams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lau, B. ; Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany ; Sprunk, C. ; Burgard, W.

This paper presents novel, highly efficient approaches for updating Euclidean distance maps and Voronoi diagrams represented on grid maps. Our methods employ a dynamic variant of the brushfire algorithm to update only those cells that are actually affected by changes in the environment. In experiments in different environments we show that our update strategies for distance maps and Voronoi diagrams require substantially fewer cell visits and significantly less computation time compared to previous approaches. Furthermore, the dynamic Voronoi diagram also improves on previous work by correctly dealing with non-convex obstacles such as building walls. We also present a dynamic variant of a skeletonization-based approach to Voronoi diagrams that is especially robust to noise. All of our algorithms consider actual Euclidean distances rather than grid steps. An open source implementation is available online.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010